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N U M E R I C A L  S O L U T I O N  

OF N O N L I N E A R  P R O B L E M S  

OF S P A T I A L  E Q U I L I B R I U M  F O R M S  

F O R  T H I N  E L A S T I C  R O D S  

G. V.  Ivanov* and O. N.  Ivanova UDC 539.3 

The problems of three-dimensional equilibrium forms of thin elastic rods are considered, in which one 
end of the rod is fixed and the other is loaded by a system of specified conservative forces. The method for 
constructing a sequence of approximate solutions with monotonically decreasing values of the energy functional 
is proposed. The method reported differs from that in [1] in that all angles determining the orientation of the 
main inertial axes of the rod cross sections are varied simultaneously. 

1. Var ia t iona l  S t a t e m e n t  of  t h e  P r o b l e m .  The stable equilibrium form of a thin elastic rod with 
one end fixed and the other loaded by a system of given conservative forces P,~ (m = 1 ,2 , . . . ,  M) corresponds 
to the minimum of the functional 

1 ~  a M 
r  "~ ~ '~{Dk(wk-w~ - ~ P m ' r m ,  (1.1) 

0 k = l  m----1 

where l is the rod length; Dk (k = 1,2, and 3) are the flexural and torsional rigidities; wk, w0 (k = 1,2 and 
3) are the curvatures and torsion of the rod axis in the deformed and undeformed states 

dO de dO 
Wl = sin 0- sin r + ~s  cos ~, w2 = ~ s  sin 0 .  cos qo - ~-s sin ~, 

(1.2) 
~ a = ~ c o s ~ +  , ~.=wk 

0=r 0=0o, ~=~o 

~,, 0, and ~ are the Euler angles determining the orientation of the basis vectors e~ (i = 1,2, 3) directed along 
the main inertial axes of the cross section and along the rod axis (Fig. 1); r zg0, ~0 are the Euler angles in 
the undeformed state; and rm (m = 1,2 , . . .  ,M) are the radius vectors of the points of application of the 
forces Pm (m = 1 ,2 , . . . ,  M) in the equilibrium state. 

It is assumed that the values and directions of the forces Pm (m = 1 ,2 , . . . ,  M) are independent of the 
rod deformation, and hence the components Pin, of these forces ( P / =  Pro" e i) are constant in the Cartesian 
coordinates xi with the basis vectors e i = ei. 

We denote by r the radius-vector of the end s = I of the rod axis. Using the obvious equality 

dr 
dU = 

and assuming that 
I l I I r m = r + r m ,  rm=(Zk)mek, 
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Fig. 1 

we can write for the potential energy of the forces Pro: 

M l 
-- X] P m ' r m = - [ f F ' e ~ d s + N k ' e ~ ] ,  

m=l 0 

where 

(1.3) 

M M 
P~(zk)mel;  F =  Z P m ;  N k =  ~ i , 

m=l m=l 

' . e! ,= sinT n + c o s ~ - n ' ;  e ~ =  sinO n " + c o s 0  e3; e l = c o s ~ - n + s i n ~ . n ' :  _ - . . . .  

n = cos r  el + s i n e -  e2; n' = cos0 �9 n" + sinO �9 e3; n" = -- s i n e  �9 el + cos r �9 e2. 

Functional (1.1) is defined on the functions ~, 0, and ~, satisfying the conditions 

0 s=o = O. (1.4) = o, (r + ~) s=0 

The coordinates xk of the rod axis are related to ~b, ~, and ~ by the formula 
8 

t "  

xk = / et3 �9 ek ds.  

o 
N 

2. A p p r o x i m a t i o n  of t h e  E n e r g y  Func t iona l  by  a Q u a d r a t i c  Func t iona l .  Let r 0, and ~ be 
some functions satisfying conditions (1.4). By the algorithm proposed we construct the functions ~(s) ~(s), 
and ~b(s) satisfying (1.4) such that 

r ~+0, ~+~).<r ~, ~). (2.1) 

The equality in (2.1) is possible only for tb, ~, ~ corresponding to the extremum of the functional r (in this 
c a s e r  =~b--=O). 

We denote by ~' the functional resulting from expansion of ~(r +~, ~ + ~, ~ + ~) into a series with 
retention of summands that are linear and quadratic with respect to r ~, ~b: 

@' = ~x + @2, 

= {Dk@k-  - w  ~ +&k)2}-2F. (~+6i )  ~/s Nk  �9 (~ +el,) , ' '  (2.2) 

@2 = ~ {Dk(~k-w~)&k}- -F- f i~  ds=-~Nk 'a~k .  
0 

Here 

dO ~-~ cos ~. sin~; d~ sin ft. sin ~ + ~s  cos ~ + ~2~b + 
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~32 = ~ -  sin ~ cos @ - sin ~ -- ~1 ~ + ~ d~ �9 Z cos a .  cos 

cos - d #  _, ~3 : ~ ~ sin ~ + ~-.s; ek : ~ X e~; A/ = ,.)kek; 

ff;k = 

~,, = ~ sin ~- sin ~ + ~) cos ~; "/2 = r sin ~- cos ~ - ~) sin ~; % = ~, cos ~ + ~b; 

dS _, 
da - ds e / r  x ~ ;  

= wkek; d---~ = wk%; "}a = ~ cos ~ .  sin ~ - 0# sin ~ + i,# sin ~.  cos ~; 

;12 = ~0 cos ,~. cos ~ - ~# cos ~ - ~#  sin ,~. sin ~; ~3 = -,],0 sin ~. 

The algorithm is based on the use of the obvious property: for sufficiently small a inequality (2.1) 
follows from the inequalities 

�9 m a x ( l r  IO(s)l, ~ a. (2.3) 

3. Dif ference  A p p r o x i m a t i o n .  The rod axis is divided by the nodes s~ = ( i -1) /h  (i = 1, 2 , . . . ,  N + t ,  
h = I/N) into N elements. The elements are enumerated by the numbers i + 1/2 (i = 1, 2 , . . . ,  N),  and the 
values corresponding to the element i + 1/2 bear the index i + 1/2. We assume that 

&b 1 
~)i+l/2-~l(~iq-l~i+l)' ( ~ s ) i + 1 / 2  = ~(/~i+1 - t~'i) 

(r are the values of ~b at the nodes). In a similar way, the quantities 

~i+a/2, ~i+1/2, ~ss i+1/2' &-s i+1/2 

are defined in terms of ~i and ~i at the nodes. The sines and cosines in the element i + 1/2 are calculated 
from formulas of the form 

(sin ~)i+1/2 = sin r (cos ~)i+V2 = cos ~'i+1/2. 

Here and below, by ~, ~5 ~, q~.l, and ~2, we mean functionals obtained from difference approximation 
of the functions r ~(s), ~(s), r ~(s), ~(s) and their derivatives in (1.1)-(1.3), (2.2), (2.3). Below 
conditions (1.4) 

'~1 = O, ,~, + ~b~ = 0 (3.1) 

are supplemented by the conditions 

'~, = r (3.2) 

It is assumed that ~l ,  ~1, ~1, ~2 satisfy the conditions 

'~1 = 0, r + ~1 = 0, ~1 = v~2. (3.3) 

4. M i n i m i z a t i o n  of Q u a d r a t i c  Func t iona l .  In the algorithm used herein for constructing the 
functions ~i, '~/, #/ (i = 1 , 2 , . . . , N  + 1) satisfying conditions (2.3), (3.1). and (3.2), the functional r  is 
minimized: 

1 g+l [~(1).7.2 .(2).52 ~(3)~ij~2] 
i~2 ~i Wi +zi viWzi r = r + ~, ~ = ~ .= 

[.~!8) (s = 1,2, 3) are nonnegative numbers]. It is obvious that the first inequality of (2.3) holds for those r 
~i, #i (i = 1 ,2 , . . .  , N  + 1) to which correspond the minimum of r The introduction of the functional 

with numbers e! 8) (s = 1, 2, 3) is one of the means used below for the second inequality in (2.3) to hold. 
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Minimization of 4)" involves two stages. In the first stage, we minimize the functional 

4)* = 4)t + 

over the class of functions ~'i. ()i. and @i satisfying conditions (3.1) and (3.2). A solution of the system below 
corresponds to the minimum of 4)*: 

Ul -= RlU2, Aiui-1 + (Bi + Ei)ui -t- Ciui+l = fi (i = 2, 3 , . . . ,  N), 
(4.1) 

AN+lUN -t- (BN+I + EN+I)UN+I = fN+l, 

where ui are vectors with the components ~i, ~)i, qhi. The matrices Ai, Bi, and Ci depend on ck, v~k, and 95k 
(k = i - 1, i , i  + 1); Ei is the diagonal matrix with the elements e! s) (s = 1,2,3); and the vectors fi 
(i = 2 , . . . ,  N + 1) are the discrepancies of the conditions of an extremum of the functional 4). 

The part of the functional 4)1 quadratic for ui is nonnegative and becomes zero when 

(&~)i+1/2 = 0, s = 1,2,3, i = 1 , 2 , . . . , N .  (4.2) 

It follows from (4.2) that 

sin 0-~s ~ + cos = - cos - = 0, - g 0, s in  
i+l/2 ~-S ds J i+l/2 (4.3) 

[ d ( ~ d ~ /  ] = 0 ,  i = 1 , 2 , . . . , N .  
-~s + ~ sin 0 c~ i+1/2 

Using (3.1)-(3.3), we find that when 

~2 # 0, 1 + ~ s i n ~ +  ~ - r  # 0, i = 2 , . . . , N  (4.4) 
)i+1/2 

Eqs. (4.3) are valid only in the case 

~i = ~i = ~i = 0, i = 1 , 2 , . . . , N +  1. 

It is further assumed that conditions (4.4) are fulfilled. Under these conditions a solution of the system 

(4.1) exists for any nonnegative numbers s!s) (s = 1,2, 3, i = 1, 2 , . . . ,  N + 1) and becomes Zero only in the 
case where the conditions of an extremum of the functional 4) hold: 

f i = 0 ,  i = 2 , . . . , N + 1 .  

The solution of the system (4.1) by the sweep method [2] can be interpreted as an element u! N) of the 
sequence 

U! k ) =  U! k-l) -t- li! k), k = 1 ,2 , . . .  ,N, i =  1 ,2 , . . .  , N  + 1, 

where u! ~ = 0 (i = 1 , 2 , . . . ,  N + 1); d! k) are determined sequentially for k = 1 , 2 , . . . ,  N by the equations 

) = = o, i =  2 , . . . , k +  1, = 1 , 2 , 3 ,  ( 4 5 )  

fi!k) = 0, i = k + 2 , . . . , N + l .  

'By ti!~ ) we denote the components of the vector ti! k). The quantities ti! k) corresponding to the solution of 

�9 (k) by the equality Eqs. (4.5) are related to -i+1 

ti! k) R'ti  (k) i = 1,2,. ,k, k = 1 2, N, 
= ~ t  i+1, " "  ' " ' ' '  
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in which the matrices Ri are independent of k. By using this property, the solution procedure can be reduced 

to the calculation of the vectors ," (i) of the matrices Ri: " i + 1  

fl~ 1) G~lf2, .G2 A2R1 + B2 + E2, 5!0+1 G~-II (fi+l -- �9 ( i -0 ,  = = = - -  2 t i+1Ui  ) '  (4.6) 

Gi+l = Ai+lRi + Bi+l + El+l, Ri = -G'~Ici, i = 2 ,3 , . . . ,  N, 

and also to the calculation of ui (i = N + 1 , . . . ,  1) from the formulas 

. ( 2 v - 1 )  ; 0 - 1 )  
U N + I  = U N +  1 , U i = u i  + R i U i + l ,  i = N , N - 1 , . . . , 2 ,  Ul = R l u 2 .  (4.7) 

We denote 

~ i n ( O )  . ( i - 1 )  . ( i -1 )1  

= u, .  C = 0 '  = u, .  I.!')=,.-4") 

(6 sn is the Kronecker symbol). It follows from (4.6) that 

~;.(~) _ a; . (0)  ~; . (0)  = g';%;k, 
e(n) -nn ' l §  Yi 

where g nk is an element of the matrix (AiRi-a + Bi) -1 , and vik is the component of the vector t"/-1 _ �9 (i-2) - -  2 t i U i _  1 �9 

To determine the numbers e!s), we used below the condition 

I~s(~)l  < A, ~ = 1,2,3 

(A is the specified number). In accordance with this condition, ~!s) are calculated by the formula 

o at I~s (0) l .<  ex, 

= (4.8) 
~Is) ~i~(0) 1 at I ~ ( 0 ) l  > A. 

exb?l g? 
The introduction of A is one of the ways of controlling the values ~i, Oi, ~bi (i = 1 ,2 , . . .  ,N  + 1) for which 
the functional (b* has a maximum. It follows from (4.6)-(4.8) that these functions tend to zero as A ~ 0. In 
the calculations the authors usually assumed that A = 0.1. 

The second stage of minimizing the functional 0" consists in correcting ui (i = 1 , 2 , . . . , N  + 1) 
corresponding to a minimum of ~*. If for these values the functional ~2 is less than or equal to zero, the first 
of the inequalities (2.3) holds and no correction is made. If (1)2 is greater than zero, then ui (i = 1, 2 , . . . ,  N + I )  
corresponding to the minimum of (I)* are multiplied by a correcting multiplier a whose value is defined by the 
minimum condition of ~".  

The functional ~* is the sum of three summands: 

(I)* = ~ + L + Q .  

Here (~ = ~(~,  ~, ~); L and Q are the first- and second-power functions homogeneous with respect to ui. The 
minimum of ~* is achieved when 

i + 2Q = 0 (4.9) 

(which can be obtained, for example, from the equality to zero of the variation of the functional ~* after 
replacing in it the variations of 6ui by ui). With the help of (4.9) the condition of minimum ~" with respect 
to a is written as 

a = Q/(Q + (I)2). (4.10) 

The values of the functionals (I)", Q, and (I)2 corresponding to those obtained as a result of correction 
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Fig. 2 Fig. 3 

of ~i, ~i, and qbl are related by the equality 

�9 " = - ( Q  + r  

Thus, using the formulas (4.6) and (4.7) with r in accordance with (4.8) and introducing, if necessary, 
the correcting multiplier a following (4.10), one can obtain the values ~i, Oi, q3i (i = 1, 2 , . . . ,  N + 1) at which 

= - ( Q  + 1r (4 .11)  

The values ~i, Oi, ~bi (i = 1, 2 , . . . ,  N + 1) can be controlled by the number A in (4.8). 
5. M i n i m i z a t i o n  of  t he  E n e r g y  Func t iona l .  If, with the values ~i, tgi, qbi (i = 1 , 2 , . . . , N  + 1) 

obtained from the minimization of the functional ~", inequality (2.1) holds, the functions @, ~i, q~i are 
replaced by r + r ~i + ~i, q~i + ~bi and the following approximation is calculated. 

If inequality (2.1) fails, the sequence of correcting multipliers 7 m (m = 1,2,3, . . . ) ,  0 < 7 < 1 is 
introduced. In the calculations the authors usually assumed that 7 = 1/2. In replacing r Oi, ~bi by 7m~i, 
7mOi, Vm~i the value of the functional r  increases but remains smaller than ~: 

r  at ~ 2 ~ 0 ,  (5.1) 

r = ~ _ 7m(2 _ ,,/rn)(Q q_ ~2) at r > 0 

[the values of Q and ~2 in (5.1) are the same as in (4.11)]. Since r  remains smaller than ~ for all m, there 
is an m such that inequality (2.1) holds. 

Thus, if r 0i, q~i (i = 1. "2 . . . .  , N + I )  do not satisfy the conditions of an extremum of the functional r 
one can construct a new approximatibn with the lower value of the energy functional by means of the above 
method. 

6. F l e x u r e  and  Torsion of a Bar  w i th  a C u r v i l i n e a r  Axis  as a R ing  Q u a r t e r .  Figure 2 shows the 
forms of equilibrium of a square bar with a curvilinear axis as a ring quarter (r = qa0 = 0, tg0 = - (a ' /2)s)  
under flexure by the force P = - P e l  applied at the end s = 1 of the bar axis. Here and below P is a 

and xi are the ratios of the arc dimensionless quantity equal to the force multiplied by I2/D2; and s, xi, 
length and coordinates to the bar axis I. 

As a first approximation, we took ~ = ~'0, ~ = v~0, ~ = ~0. Ten and twenty iterations were required to 
obtain a solution at P = 1 and 3. respectively. Here and below as a criterion of cessation of the process we 
took the condition 

max Ifil < 10-3. 
1 

Figure 3 shows the force P as a function of the coordinate zl at the end s = 1 of the bar axis. 
7. F l e x u r e  and  Torsion of a Rec t i l i nea r  B a r  by  a T ransve r se  Force  App l i ed  to I ts  End .  We 

calculated the equilibrium states of a bar under flexure and torsion by a force P = Pe2 applied to the bar 
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end at the point x~ = - d ,  x~ = 0 (Fig. 4). We considered the case where 

D1/D2 = 1/4, D3/D2 = 0.05. (7.1) 

The solid and dashed curves in Fig. 4 show the dependence of the coordinate x2 of the end s = 1 of the bar 
axis on P at d = 0 and 0.t respectively. 

It follows from the calculations of the equilibrium forms with torsional rigidities different from those in 
(7.1), that as D3 increases, the difference between the shapes of the bar axis corresponding to d = 0 and 0.1 
decreases and practically vanishes for D3/D1 = 1. The calculations performed made it possible to conclude 
that in the example cited, flexure is the principal factor determining the shape of the bar axis, whereas torsioll 
has little effect on the bar axis. 

We also considered the equilibrium states of a band of rectangular cross section with ratio of the sides 
1 : 8 under flexure and torsion by a transverse force P = P e l  applied to the point x~ = 0 x~ = d of the band 
end (Fig. 5). In this case, the difference between the shape of the bar axis corresponding to d = 0 and 0.1 
becomes significant and is shown in Fig. 5, where the solid and dashed curves represent the dependences of 
the coordinates x] and x3 of the end s = 1 of the bar axis on P at d = 0 and 0.1. 

R E F E R E N C E S  

1 .  

2. 

G. V. Ivanov and O. N. Ivanova, "Calculation of spatial equilibrium forms for thin elastic rods by the 
self-balanced discrepancy method," Prikl. Mekh. Tekh. Fiz., 35, No. 4, 130-136 (1994). 
S. K. Godunov and V. S. Ryaben'kii, Difference Schemes [in Russian], Nauka. Moscow (1973). 

736 


